Quadratic maximization and semidefinite relaxation
نویسنده
چکیده
In this paper we study a class of quadratic maximization problems and their semide nite program ming SDP relaxation For a special subclass of the problems we show that the SDP relaxation provides an exact optimal solution Another subclass which is NP hard guarantees that the SDP relaxation yields an approximate solution with a worst case performance ratio of This is a generalization of the well known result of Goemans and Williamson for the maximum cut problem Finally we discuss extensions of these results in the presence of a certain type of sign restrictions
منابع مشابه
SDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملSemidefinite relaxation bounds for bi-quadratic optimization problems with quadratic constraints
This paper studies the relationship between the so-called bi-quadratic optimization problem and its semidefinite programming (SDP) relaxation. It is shown that each r -bound approximation solution of the relaxed bi-linear SDP can be used to generate in randomized polynomial time an O(r)-approximation solution of the original bi-quadratic optimization problem, where the constant in O(r) does not...
متن کاملExact Solutions of Some Nonconvex Quadratic Optimization Problems via SDP and SOCP Relaxations
We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of objective quadratic functions and diagonal coeffici...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملA recipe for semidefinite relaxation for (0, 1)-quadratic programming - In memory of Svata Poljak
We review various relaxations of (0,1)-quadratic programming problems. These include semidefinite programs, parametric trust region problems and concave quadratic maximization. All relaxations that we consider lead to efficiently solvable problems. The main contributions of the paper are the following. Using Lagrangian duality, we prove equivalence of the relaxations in a unified and simple way...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 87 شماره
صفحات -
تاریخ انتشار 2000